Small Business Innovation Research/Small Business Tech Transfer

AggieSat: Autonomous Rendezvous and Docking Technology Demonstrator, Phase I

Completed Technology Project (2009 - 2010)

Project Introduction

Current autonomous rendezvous and docking (AR&D) capability in low Earth orbit (LEO) is constrained by sensor and effector mass, power, and accuracy limits. To this end, NASA Johnson Space Center has developed a GPS receiver, called DRAGON (Dual RF Astrodynamic GPS Orbital Navigator), specifically to address the sensor constraints. The proposed innovation includes creating a small, low-cost, and versatile technology demonstrator to validate and increase the technology readiness level of DRAGON and other state-of-the-art miniaturized sensors and effectors in an on-orbit AR&D operational scenario. For Phase 1, a demonstration platform will be developed that utilizes two picosatellites in LEO, and relative GPS as the primary sensor. These satellites will be launched as a single unit from the SSPL (Space Shuttle Payload Launcher) on STS 127, then separate and transmit DRAGON GPS data. The picosatellite technology demonstrator will be at a TRL of 7 at the end of Phase 1. For Phase 2, the demonstration platform will be further developed to further validate DRAGON, and validate IMU sensors, a 1st generation reaction control system, a 1st generation guidance navigation and control system, communication links, and an undocking mechanism.

Anticipated Benefits

The validated miniaturized sensors and effectors will be applicable to a variety of missions for DoD, companies, and universities, and the demonstrator platform itself will be plug and play, and available and adaptable to other mission validations. As an example, PM+AM Research has been working in laser-based micro-space propulsion with the AFRL Space Propulsion Directorate for many years, which has led to a number of applications of distributed systems based on picosats. Our concept will help realize such distributed systems. The communities with immediate interest include: responsive space, midcourse ballistic missile defense, and space situational awareness. PM+AM Research is working with DoD in each of these, and a suitable platform for specific test scenarios will allow us to perform test and evaluation measurements/scenarios attractive to these customers. These anticipated development efforts are expected to lead to follow-on efforts and eventual products, which may require the involvement of the large integrators.

AggieSat: Autonomous Rendezvous and Docking Technology Demonstrator, Phase I

Table of Contents

Project Introduction	1	
Anticipated Benefits		
Primary U.S. Work Locations		
and Key Partners	2	
Project Transitions		
Organizational Responsibility	2	
Project Management	2	
Technology Maturity (TRL)	3	
Technology Areas	3	

Small Business Innovation Research/Small Business Tech Transfer

AggieSat: Autonomous Rendezvous and Docking Technology Demonstrator, Phase I

Completed Technology Project (2009 - 2010)

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
	Lead Organization	NASA Center	Houston, Texas
Physics, Materials, and Applied Mathematics Research, LLC	Supporting Organization	Industry	Tucson, Arizona
Texas A&M Engineering Experiment Station(TEES)	Supporting Organization	Academia	College Station, Texas

Primary U.S. Work Locations	
Arizona	Texas

Project Transitions

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Johnson Space Center (JSC)

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Project Manager:

Robert S Provence

Principal Investigator:

Helen Reed

Small Business Innovation Research/Small Business Tech Transfer

AggieSat: Autonomous Rendezvous and Docking Technology Demonstrator, Phase I

Completed Technology Project (2009 - 2010)

Technology Areas

Primary:

- TX17 Guidance, Navigation, and Control (GN&C)
 - □ TX17.4 Attitude Estimation
 Technologies
 - ☐ TX17.4.3 Attitude Estimation Sensors

